CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph Similarity Learning

Di Jin¹, Luzhi Wang¹, Yizhen Zheng², Xiang Li³, Fei Jiang³, Wei Lin³ and Shirui Pan^{2*}

¹College of Intelligence and Computing, Tianjin University, Tianjin, China

²Department of Data Science and AI, Faculty of IT, Monash University, Australia

³Meituan, Beijing, China

{jindi, wangluzhi}@tju.edu.cn, {yizhen.zheng1, shirui.pan}@monash.edu

IJCAI 2022 Code: None

2022. 06. 29 • ChongQing

Introduction

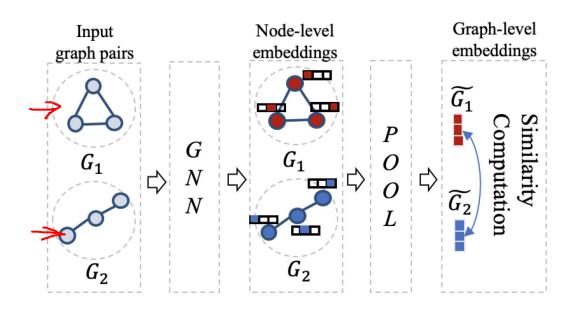


Figure 1: A view of the supervised graph similarity learning model.

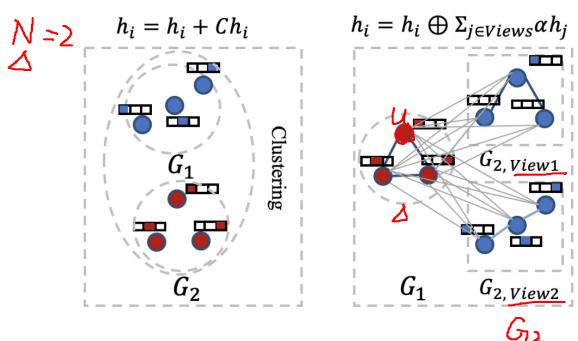


Figure 2: Comparison of node information update process. Left: Clustering-based unsupervised graph similarity learning. Right: Our proposed model CGMN. h_i denotes the embedding of node i C represents the clustering weight, \oplus is concatenation, and α represents the cross-graph interaction weight.

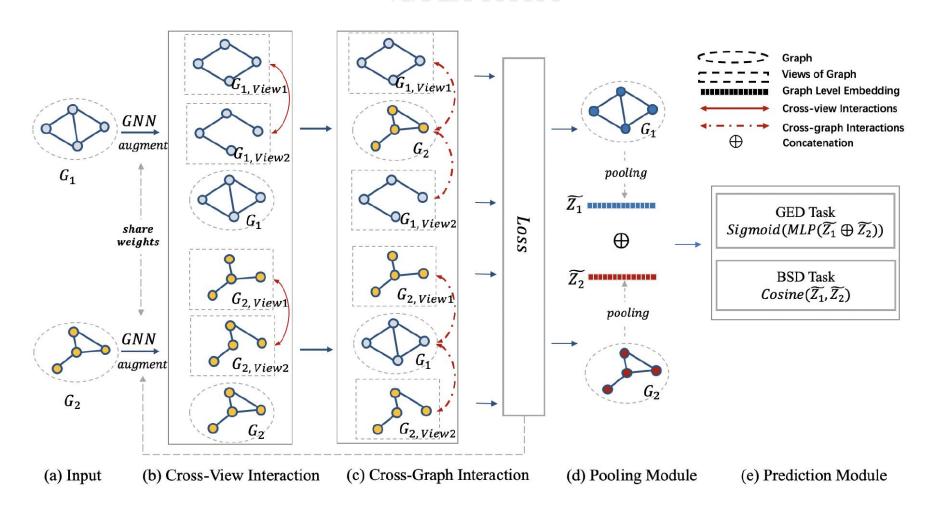


Figure 3: Overview of CGMN. First, we provide a framework to learn the embedding of each node. Second, we propose a cross-graph interaction strategy to match nodes in graph pairs. Third, we aggregate node embeddings to obtain the graph-level representations. Finally, we predict the similarity of graphs for different tasks.

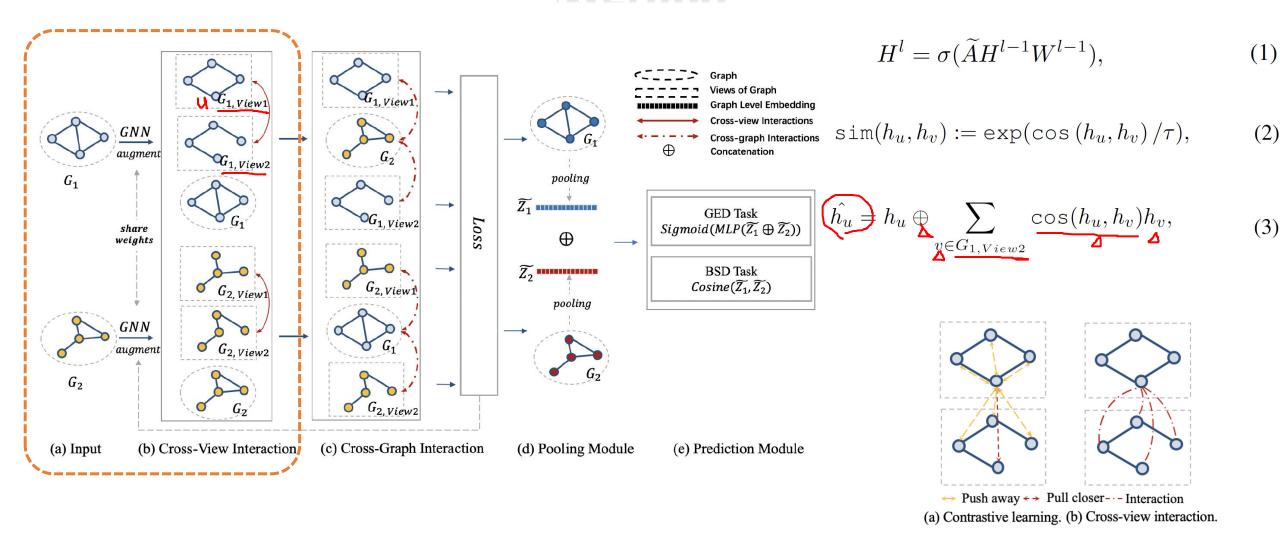
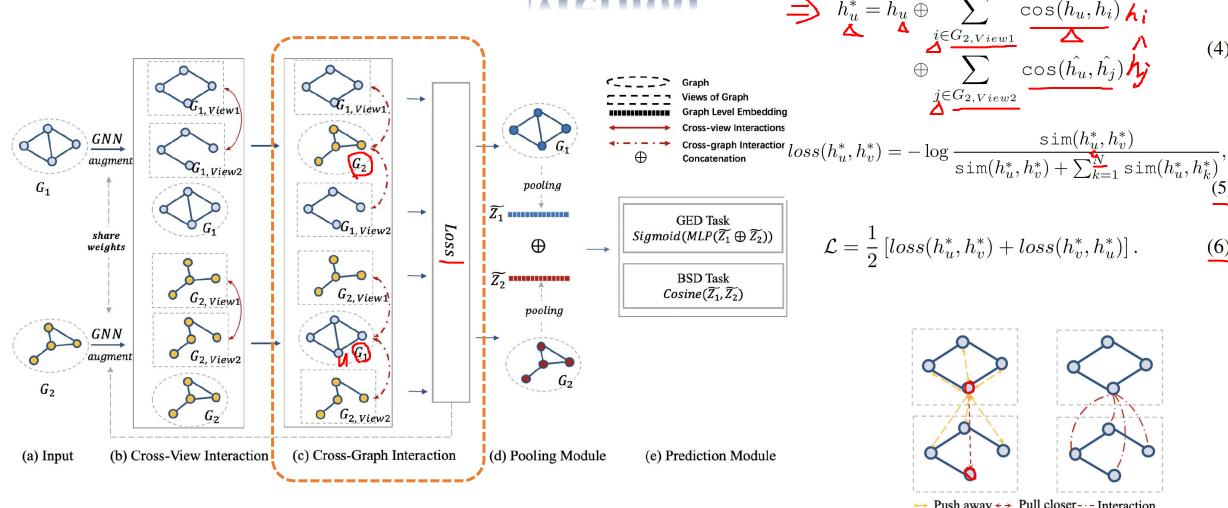
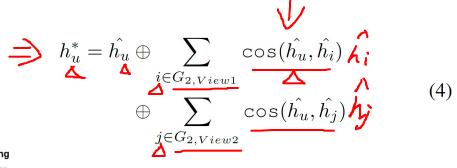
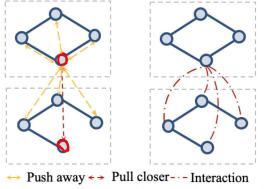
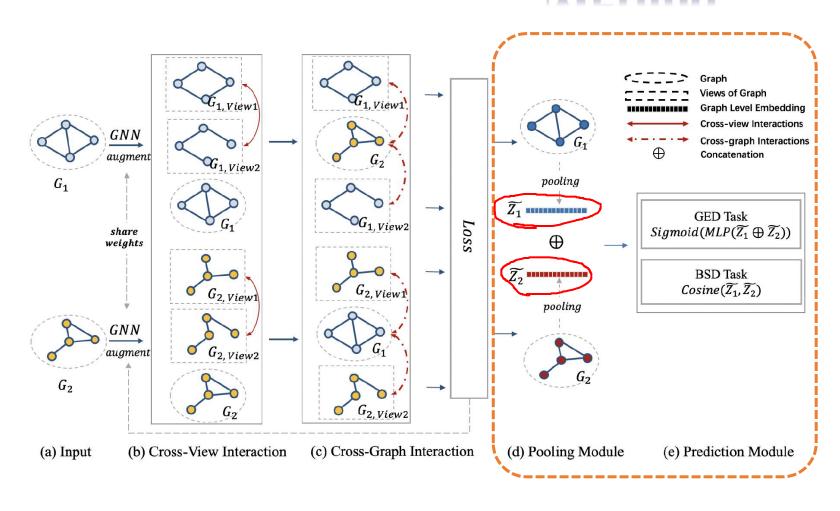





Figure 4: Difference between (a) contrastive learning and (b) crossview interaction.



$$\mathcal{L} = \frac{1}{2} \left[loss(h_u^*, h_v^*) + loss(h_v^*, h_u^*) \right].$$
 (6)

(a) Contrastive learning. (b) Cross-view interaction.

Figure 4: Difference between (a) contrastive learning and (b) crossview interaction.

$$\tilde{Z} = \text{AVG}(h_u : u \in G),$$
 (7)

$$y = \operatorname{sigmoid}(\operatorname{MLP}(\tilde{Z_1} \oplus \tilde{Z_2})).$$
 (8)

$$y = \cos(\tilde{Z}_1, \tilde{Z}_2). \tag{9}$$

Experiments

	Datasets	Graphs	AvgN	AvgE	Classes
	Aids700nef	700	8.90	8.80	_
	Linux1000	1000	7.58	6.94	-
OpenSSL (OS)	OS [3, 200]	73,953	15.73	21.97	4,249
	OS [20, 200]	15,800	44.89	67.15	1,073
	OS [50, 200]	4,308	83.68	127.75	338
FFmpeg (FF)	FF [3, 200]	83,008	18.83	27.02	10,376
	FF [20, 200]	31,696	51.02	75.88	7,668
	FF [50, 200]	10,824	90.93	136.83	3,178

Table 1: Statistics of the datasets.

Experiments

Spearman's Rank Correlation Coefficient (ρ)

Kendall's Rank Correlation Coefficient (τ)

Datasets	Methods	$MSE (10^{-3})$	ho $ au$		p@10	p@20
	GCN	11.395 ± 1.315	0.577 ± 0.021	0.418 ± 0.018	0.041 ± 0.002	0.077 ± 0.003
Aids700nef	GIN	9.280 ± 0.163	0.629 ± 0.020	0.462 ± 0.016	0.044 ± 0.018	0.096 ± 0.021
	DGI	15.009 ± 0.347	0.231 ± 0.093	0.164 ± 0.061	0.039 ± 0.006	0.076 ± 0.001
	GRACE	12.176 ± 1.693	0.366 ± 0.186	0.261 ± 0.134	0.038 ± 0.004	0.072 ± 0.018
	ScGSLC	13.060 ± 0.193	0.394 ± 0.133	0.281 ± 0.097	0.080 ± 0.026	0.142 ± 0.044
	CGMN	6.641 ± 2.227	0.674 ± 0.129	0.502 ± 0.107	$0.084 {\pm} 0.019$	0.140 ± 0.024
	GCN	11.986 ± 1.532	0.569 ± 0.033	0.411 ± 0.028	0.043 ± 0.005	0.071 ± 0.001
	GIN	22.188 ± 5.259	0.647 ± 0.112	0.484 ± 0.099	0.081 ± 0.018	0.084 ± 0.025
Linux 1000	DGI	33.854 ± 0.013	0.052 ± 0.018	0.039 ± 0.002	0.035 ± 0.020	0.073 ± 0.016
	GRACE	14.180 ± 2.080	0.852 ± 0.019	0.673 ± 0.025	0.443 ± 0.155	0.452 ± 0.175
	ScGSLC	13.423 ± 2.038	0.840 ± 0.010	0.658 ± 0.021	0.192 ± 0.095	0.213 ± 0.120
	CGMN	10.514 ± 1.178	0.873 ± 0.013	0.700 ± 0.015	0.307 ± 0.071	0.330 ± 0.091

Table 2: Experimental results on the GED datasets in terms of five evaluation metrics.

Methods	OS [50, 200]	OS [20, 200]	OS [3, 200]	FF [50, 200]	FF [20, 200]	FF [3, 200]
GCN	67.24 ± 1.14	68.09 ± 1.01	73.51 ± 0.72	78.41 ± 0.49	79.47 ± 0.08	80.88 ± 0.18
GIN	66.60 ± 0.10	63.85 ± 0.56	75.65 ± 0.30	78.38 ± 0.20	81.25 ± 0.57	81.82 ± 0.25
DGI	67.55 ± 2.76	63.58 ± 1.96	72.58 ± 2.36	86.10 ± 0.66	80.82 ± 2.22	66.28 ± 0.30
GRACE	68.84 ± 2.45	67.01 ± 0.49	69.86 ± 0.29	85.44 ± 0.27	75.05 ± 0.73	66.95 ± 2.78
ScGSLC	67.43 ± 0.82	61.46 ± 0.33	63.28 ± 0.09	87.57 ± 0.82	83.27 ± 0.71	69.80 ± 1.22
CGMN	80.89 ± 0.20	78.15 ± 0.85	75.94 ± 1.86	86.11 ± 0.98	86.76 ± 0.85	77.98 ± 2.69

Table 3: Experimental results on the BSD datasets in terms of AUC scores (%).

Experiments

Methods	MSE	ρ	au	p@10	p@20
CGMN w/o cross-view	8.239	0.614	0.451	0.064	0.114
CGMN w/o cross-graph	8.753	0.537	0.387	0.050	0.091
CGMN	6.641	0.674	0.502	0.084	0.140

Table 4: Ablation study on Aids700nef.

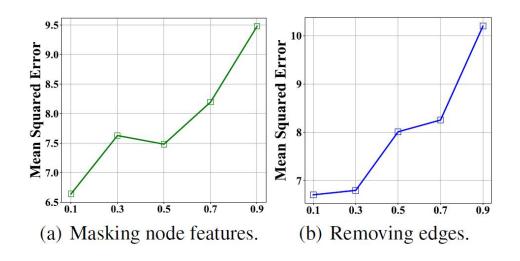


Figure 5: Influence on parameters.

Thanks